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Chapter 1

Introduction

1.1 What is Natural language processing and which

are its applications to impaired language

Natural Language Processing (NLP) is a field of artificial intelligence that aims to
process in an automatic way the natural language, that is the language talked by
human beings. A possible objective is to extract some sort of information from a
sequence of utterances. This information can be relatively simple (e.g. the number
of words, although also this task can become very complex depending on the lan-
guage and the definition of word) or very high level (e.g. sentiment classification).
Another objective can be to generate utterances in a natural language based on
a previously learned language model. This thesis uses NLP techniques only for
features extraction.
The advancements in the NLP field have led to its application also in the bio-
medical sector. Concerning in particular impaired language, two main paths are
being followed. One is the study of the disturbed language, both for linguistic
research and for diagnostic purposes. The other is the development of tools for
linguistic rehabilitation. This thesis falls in the first category, and a review of the
state of the art of the application of NLP to the study of impaired language in
the particular case of subjects affected by dementia will be given in section 2.1.
Concerning the second category, [1] is a meta-analysis (probably a bit outdated,
having been published in 2015) of available tools for the rehabilitation of aphasic
patients.
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1.2 – What is Alzheimer’s Disease

1.2 What is Alzheimer’s Disease

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease. It covers around
80-85% of all cases of dementia. It usually occurs in people older than 65 years,
although there are some early-onset forms, mainly due to genetic factors, that begin
much before (sometimes already in the 40s).
One of the main symptoms of AD is the loss of memory, that begins with an
increased difficulty to consolidate new memories (anterograde amnesia), then pro-
ceeds with a progressive retrograde amnesia. The amnesia affects mainly the seman-
tic memory, but in the late stages, also the procedural one is compromised. Another
important symptom is the difficulty to plan and to focus on tasks. Both the amnesia
and the difficulty to focus and plan affect the language, that acquires some peculiar
characteristics that will be described later in this thesis. In late stages, beside a
general worsening of cognitive functions, also physiological functions are affected.
If there are not co-morbilities, infections, dehydration or malnutrition, that are by
far the most common causes of death, the patient dies when the disease compro-
mises the respiratory center in the brainstem. Both the average age at which AD
becomes symptomatic and the average life expectancy after the diagnosis strongly
depend on the lifestyle of the patient.
The impairment of cognitive and physiological functions is due to an anomalous
accumulation of amyloid beta protein in the brain (in the extracellular space) that
reduce the ability of the neurons to transmit impulses, and of tau protein (”tau tan-
gles”) inside the neurons, that interferes with the transportation of nutrients and
other substances inside the affected cells. This causes the death of neurons, whose
remains aggregate to amyloid to form plaques. This make the immune system react
and the inflammatory process further speed up the death of other neurons. The
macroscopic result is a loss of weight and volume of the brain.
The accumulation of amyloid beta is a prodromic sign that can appear several
years before the diagnosis. At the beginning, the damages caused by the amyloid
are so small that the brain is able to maintain its functions completely. Then, the
so-called Mild Cognitive Impairment (MCI) occurs. The deterioration of cogni-
tive functions is usually evident enough to be considered a sign of AD only some
year later. Additionally, especially in young patients, the first symptoms are often
confused with those caused by other pathologies, both neurological (e.g. frontotem-
poral dementia) or psychiatric (e.g. depression). Since most therapies (that by now
are unable to stop the progression of the disease, but they can alleviate some of
the symptoms) give better results when they are started in the early stages of the
disease, it’s evident how is important to improve the accuracy of the diagnosis.
For a more detailed and extensive description of AD, see for example [2] and [3] or
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1 – Introduction

the website of the Alzheimer’s Association1, where you can also find information
about the Italian situation2.

1.3 Objective

The objective of this thesis is to evaluate the feasibility and eventually build a
prototype of an automatic system able to support the physicians in the evaluation
of mild cognitive decline from speech characteristics, with particular attention to
AD. The main features of the system should be: support for Italian language, com-
plete automation from audio transcription to samples classification, low cost and
predisposition to be adapted to other languages or pipeline components.
The objective evolved during the progress of the thesis to cope with various issues
that arose and to adapt better to the needs of clinicians of the speech therapy de-
partment of the university of Turin with which we collaborated.
Initially, the aim of this thesis was to create a system to help with the diagnosis
of Alzheimer based on a Raspberry Pi with an always-on microphone to place at
the patient’s location. the subject’s speech would have been extracted from the au-
dio source and processed to extract useful language features. Then, those features
would have been used as inputs for a classifier to extract a diagnostic hypothesis.
However, that version of the project was problematic for many reasons.
First of all, it soon appeared to be necessary to recognize speakers, otherwise by in-
discriminately analyzing both patient’s and caregiver’s speech the diagnosis would
have been biased toward ”healthy”. More precisely, it would have been necessary to
do speaker segmentation of the audio source. Also assuming that the caregiver and
the patient never talk contemporary, this is a very difficult task. The complexity of
speaker and speech recognition would have been exacerbated by the fact that these
tasks would have been carried on in a noisy environment and with old patients,
which voice volume is often quite low.
Another problem is the definition of the time frame to analyze before giving a diag-
nosis. On one hand, a too short time frame can be little representative of the real
condition of the patient (for example if an AD patient has a moment of lucidity
or an healthy one has an hesitation). On the other hand, a too large time frame
can be not sensitive enough to crisis that sometimes occur in Alzheimer patients.
Moreover, it’s difficult to establish when to start the time frame.
Due to the aforementioned issues, the project was simplified in order to be con-
cluded in a reasonable amount of time and effort and concentrating more on natural
language processing. The new application is intended to be used during a standard

1www.alz.org

2https://www.alz.org/it/dementia-alzheimers-italy.asp
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1.4 – Characteristics of Italian and differences with respect to English

examination carried out by a physician in an ambulatory and by using cheap and
largely available hardware and software.
Instead of an environmental microphone, a smartphone is used to record the audio.
The device is placed on the table between the two interlocutors. The time frame to
consider for the analysis corresponds to the duration of the examination (the physi-
cian starts the recording at the beginning and stops it at the end). The speaker
segmentation problem is still not solved, but due to the specific setting in which
the recording is performed, the patient should talk much more than the examiner.
Python is the chosen programming language, because there are a lot of available
libraries for machine learning and natural language processing and it makes easy
and fast to create a prototype.

1.4 Characteristics of Italian and differences with

respect to English

The work of this thesis focus on the Italian language mainly for two reasons. The
first is that the long term objective is to build a tool that can be used in the hos-
pitals of Turin and of the rest of Italy, where obviously most of the patients speak
only Italian. The second is that most of the researches available in literature work
on the English language, but it can be interesting to evaluate how the currently
available NLP libraries perform and how the relevant features to discriminate be-
tween healthy and AD individuals change when considering another language.
English and Italian are very different languages. Whereas the first is a Germanic
language which lexicon has been influenced by Romances languages, especially
French, Italian is a pure Romance language, the nearest to Latin. The differ-
ences between the two languages refer to all the levels from phonology to semantics
and pragmatics, but for the purpose of this thesis, only some of them are relevant.
For what concerns the morphology, it’s important to notice that English doesn’t
inflect lexemes according to gender, whereas Italian does, and the plural form ex-
ists only for nouns and is usually easier to form than in Italian. For this reason,
often in Italian personal pronouns are omitted, and there is much more freedom in
the ordering of the words in the sentence. Moreover, in Italian is very common to
implement verbs tenses by applying suffixes or even by changing the stem, while in
English many tenses are provided by adding particular words (e.g. will, would, to,
etc.).
Syntactically, a relevant difference is that for English, since the meaning of a sen-
tence relies a lot on the order of the words, it’s possible to detect questions also
when there is no punctuation, while in Italian this is often more difficult. Another
important difference, dependent on the morphological ones, is that in Italian there
is gender and number agreement between a noun and all the words related to it,
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1 – Introduction

while in English this is not true for adjectives and it’s more complicated for pro-
nouns and verbs.
From the semantic point of view, an important difference is the fact that possessive
pronouns in English are inflected only based on the gender and number of the sub-
ject, while in Italian they are inflected based on the object (e.g. ”Tizio prende il
suo ombrello / la sua giacca / le sue scarpe”, in English ”Tizio takes his umbrella
/ his jacket / his shoes”) but there are always different pronouns for singular and
plural subjects (e.g. ”Tizio e Caio prendono il loro ombrello / le loro giacche / il
proprio ombrello / i propri ombrelli / le proprie giacche”, in English ”Tizio and
Caio take their umbrella / their jackets / their umbrella / their umbrellas / their
jackets”).
Another important difference is the use, in Italian, of the third singular feminine
person as a courtesy form to refer to an interlocutor with which the speaker is
not familiar (e.g. the physician that is examining the patient). This obviously
complicate the anaphora resolution.

8



Chapter 2

Literature analysis

2.1 Related works

As claimed by [4], Alzheimer’s disease (AD) can be predicted effectively by analyz-
ing the changes in the language abilities of the patient. These changes involve both
phonetics (e.g. syllables per minute, hesitations), lexicon and semantics (for exam-
ple wrong words) and pragmatics, while only in late stages of the disease syntax
errors are observed. Also [5], a meta-analysis comparing 61 articles concerning lan-
guage disorders in several forms of dementia and many different languages, comes
to similar conclusions for AD.
This fact led to several researches aimed to find metrics to identify AD patients
based on the analysis of (more or less) spontaneous speech. Singh ([6][7][8][9])
defined 8 attributes to characterize dysphasic patients: noun, pronoun, adjective
and verb rates, Type-Token Ratio, Brunét’s Index, Honoré’s Statistics and Clause-
like Semantic Unit rate (for detail see section 2.2). [10] was able to discriminate
AD patients from a control group by using the first seven parameters, while the
Clause-like Semantic Unit was found to be not relevant. [11][12] apply these met-
rics, plus others taken from [13], [14], [15] and [16] (namely: percentage of go-ahead
utterances, repeated words, pauses, incomplete words (also called restarts), filler
utterances, paraphrasing and syllables per minute (section 2.2)) on three different
corpus containing conversations transcribed by hand, finding contrasting results.
The differences were explained by comparing with the same metrics the interviewer
of the different corpus, finding that in some of them they use a lower lexical rich-
ness, probably to adequate to the patients they were talking to. However, it was
always possible to classify the speakers using the statistically relevant metrics for
each corpus (although with different accuracies and with overfitting for the non-
Alzheimer class due to classes unbalance). Other useful attributes were found by
[17] (question and confusion rate, no answer count, phonemes per word and word
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entropy (section 2.2).
In all the previous cases, the classification was done on manually transcribed con-
versations. [18] identified 4 acoustics parameters that can discriminate AD patients
from other people: articulation rate, speech tempo, hesitation ratio, grammatical
errors (only in late stages) (section 2.2). Based on these metrics plus duration
and number of silent and filled pauses, [19] built an Automatic Speech Recognition
(ASR) software able to classify patients without the need to transcribe by hand the
conversations.
Other successful attempts to analyze disfluent speech with ASR were carried out
by [20] and [21]. The first is based on a test where the subject has to retell a story,
and the score is based on the story elements that are recalled by the patient. So
it doesn’t use on any of the previously listed features, but it try to align the auto-
matically transcribed text to the reference in order to find which story elements are
present (that technique is based on a previous experiment on manually transcribed
text, see [22]). The second (that, to be precise, aims to detect progressive aphasia)
exploit, additionally to some of the textual and acoustic metrics mentioned before,
the familiarity, imageability and age of acquisition of words by consulting special
dictionaries.
A very recent paper ([23]) proposed to create a graph representation of the text
(manually transcribed in this case) where links represent the co-occurrences of the
words, in order to extract a set of topological features (pagerank, betweenness, ec-
centricity, eigenvector centrality, average degree of the neighbors of a node, average
shortest path lenght of a node, degree, assortativity degree, diameter and cluster-
ing coefficient (section 2.2)). There features, together with other more traditional
metrics, were found to be useful to detect mild cognitive impairment. For the tests,
three different corpus were used, included the cookie theft dataset, that is very
similar to one of those used in this thesis. In order to cope with the short length of
the texts (that make the graph almost linear), edges were added also for all pairs
of words that are similar enough.
Another recent paper ([24]) tried to use deep learning for this task, with a top
accuracy of 91.1% obtained using a hybrid Convolutional Neural Network - Recur-
rent Neural Network (CNN - RNN) on manual transcripts annotated with Part-
of-Speech tags. However, this result may be optimistic, because the dataset was
created by splitting each transcript in utterances and by considering each utter-
ance as a sample. Moreover, the used corpus contains multiples transcripts for
many subjects. So, if no particular countermeasures were taken (and the paper
doesn’t mention them), the training, development and test set were not indepen-
dent.
Concerning Italian language, [25] is a relevant paper published by a group of the
University of Bologna few months before the end of this thesis. In that research,
96 audio files are manually transcribed, then a large set of acoustic and linguistic
features is extracted and evaluated to determine the relevance of each of them.

10



2.2 – Analysis of disfluencies

2.2 Analysis of disfluencies

2.2.1 Nouns, pronouns, verbs and adjectives rates

Anomic aphasia is one of the most evident symptoms in AD subjects. So the Noun
Rate (2.1), computed as the number of nouns divided by the number of words,
tends to be lower than in healthy people. The nouns that the patient is not able to
recall are often substituted by pronouns (so the Pronoun Rate, (2.2), increases) and
sometimes by circumlocutions containing also adjectives and verbs (so the results
of equations (2.3) and (2.4) may be a little higher than for healthy people). In the
case of the Italian language, the PR increases also because AD patients tend to
explicit them much more often than usual (Italian often doesn’t require to explicit
personal pronouns, see section 1.4). Other frequent replacements for the forgot
nous are the so-called ”thing words”, that are nouns with a very generic meaning
(although they can have also more specific meanings), like ”cosa”, ”coso”, ”roba”,
”affare”, ”tipo”, ”tizio” and so on. The presence of a lot of these generic nous can
affect the significance of the NR, but from the collected bibliography is not clear
if it’s better to consider them or not (in the second case, they should be removed
only from the noun or also from the word count?).

NR =
N

W
(2.1)

PR =
P

W
(2.2)

AR =
A

W
(2.3)

V R =
V

W
(2.4)

Additionally from the already mentioned statistics, this thesis will evaluate the
opportunity to take into account the moving average version of them. That is, a
sliding window will be moved on the text, one word at a time, and each of the
aforementioned rates will be calculated for the window at every step. At the end,
for each statistic, the average will be calculated. This technique is historically used
for other metrics (e.g. subsection 2.2.2) to avoid biases due to the variable length
of the analyzed texts, but it’s not evident if it can be useful also in this case.

2.2.2 Lexical richness indexes

The reuse of words already retrieved from the semantic memory is one of the pecu-
liar coping mechanisms used by AD patients to reduce the effort needed to continue
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2 – Literature analysis

a conversation. The magnitude of this phenomenon can be measured by three met-
rics: Type Token Ratio (TTR), Brunét’s Index (BI) and Honoré’s Statistics (HS).
TTR (2.5) is computed as the cardinality of the used vocabulary (the number of
different words) over the total number of words. Note that sometimes in literature
the TTR is the reciprocal or the percentage of the definition given here. In any case,
the main disadvantage of the TTR is that for short utterances it tends to represent
an exaggeratedly high lexical richness, and the opposite for very long utterances.

TTR =
V

W
(2.5)

An improved version of TTR, independent from the text length, is the Moving
Average TTR (MATTR, [26]). Analogously to the moving average version of the
parts-of-speech rates, MATTR is based on a sliding window of fixed size that move
through the text. For each position, TTR is computed. At the end, the average is
computed.
Other two metrics that are independent from text length are Brunét’s Index (BI)
(2.6) and Honoré’s Statistics (HS) (2.7). In particular, Honoré’s Statistics takes
into consideration also the number of words that appear only once (V1).

BI = W V 0.165

(2.6)

BI =
100log(N)

1− V1

V

(2.7)

The richer the language, the higher TTR and HS are and the lower BI is.

2.2.3 Cohesion

The cohesion is the property of a text that makes all its parts to be correctly linked
between each other so that they may combine in a significant way. AD subjects
usually have more difficulties to formulate cohesive sentences because they don’t
find the correct words or they lose the focus, especially when the sentence is long. A
metric that has been proposed to quantify the cohesion of a text is the Clause-like
Semantic Unit (CSU) rate.
Basically, a CSU is a cohesive utterance. It’s computed according to a set of rules
described for example in [7], that take into account the usage of conjunctions, the
repetition of words, the automatisms and many other elements in order to split a
disfluent text into cohesive units. At the end, the CSU rate is computed as the
number of CSU per 100 words. The lower, the better.

12



2.2 – Analysis of disfluencies

2.2.4 Prosody, repetitions and restarts

The difficulty to retrieve the correct words and to stay focused affect also the
prosody. In particular, AD subjects’ speech is usually slower and contain more
and longer pauses (in some papers called hesitations) than in the case of healthy
people. The speed of the speech is usually calculated in syllables per minute,
because syllables can be retrieved from text and have a more constant duration
than words. Pauses can be considered by taking into account only their frequency
or also their duration, or by simply considering them in the computation of the
syllables per minute. Alternatively to syllables per minute it’s possible to calculate
the articulation rate (i.e. number of phonemes per second ignoring pauses) or the
speech tempo (i.e. number of phonemes per second including pauses).
Where a pause occurs and what happens after it is also important. In particular,
in literature are usually considered the case where there is a repetition of one or
more words around the pause and the one where the pause occurs in the middle
of a sentence (sometimes also in the middle of a word), and after the pause the
speaker starts a new, different sentence. The last case is called restart.

2.2.5 Pragmatics

An AD subject usually adopt some strategies to try to hide his deficits. An example
is the use of go-ahead utterances, that are composed by few words or ”noises” (1,
2 or 3 in most cases) just to tell the interlocutor that he is listening and he wants
him to continue to talk (e.g: ”uh huh”, ”ok”, ”I understand” etc.). Some of these
utterances can be used also as fillers during hesitations.
Another example is paraphrasing. This can be used both to reduce the effort in
producing an answer by reworking the question or to cope with the difficulty to
retrieve a word by circumlocuting it.
Other pragmatic features considered in literature are question and confusion rate.
The first is calculated as the number of ”question words” (e.g. the w-words) divided
by the total number of words, whereas the second is, analogously, the rate between
the number of words like ”maybe”, ”perhaps”, etc. and the total number of words.
A defect of the question rate is that some of the question words can be used also
outside questions, and that’s particularly relevant for Italian language, where for
example ”what” can be ”che cosa” but also ”cosa”, that also means ”thing”, or
”che”, that can be an adjective, conjunction or pronoun and is used in a lot of
situations. So it’s at least necessary to also consider the POS, but especially for
”che” the tagger can have difficulty to distinguish if it is an interrogative adjective
or pronoun or a conjunction.

13
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Chapter 3

Techniques and tools

3.1 Relevant Natural Language processing (NLP)

techniques

3.1.1 Basics

From the lexico-syntactic point of view, it’s necessary to individuate words and
possibly base noun phrases (that are composed by a noun plus eventually words
that describe that noun; e.g.: ”the world’s largest tech fund”) and sentences. These
techniques are called word, noun and sentence chunking or tokenization. For each
of these types of chunking, several diffentent algorithms can be used. The simplest
merely split the text based on specific delimiters (spaces for words chunking, punc-
tuation for sentences tokenization). Obviously these symple techniques doesn’t
allow to implement noun chunking, and give poor results also for the other two
kind of tokenizations (consider for example the cases where there are acronyms).
More sophisticates methods, instead, after the basic splitting extract a set of fea-
tures from the text of each aspirant token to check through a classifier if it can be
confirmed or not. An example of this technique is the punkt algorithm used for
sentence chunking in NLTK ([27], 1). Always NLTK provides another method for
word tokenization, based on regular expressions. Both classification and regular
expressions allow to obtain better results and to implement also noun chunking.
Yet different methods are proposed by spaCy [28], that for word tokenization apply
the basic step and then, for each chunk, checks if it matches an exception rule (e.g.
”let’s” must be splitted in ”let” and ”’s”, whereas ”U.K.” must be kept as is) or if
an affix can be split off (e.g. punctuation, quotation marks, parentheses, hyphens,

1https://www.nltk.org/_modules/nltk/tokenize/punkt.html
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3 – Techniques and tools

etc.). [29] provides an interesting and effective way to add punctuation to com-
pletely ”flat” text, like the one returned by the majority of the speech recognition
tools. It can be used as a preprocessing step before performing tokenization.
Other two foundamental techniques are Part-Of-Speech (POS) tagging and lemma-
tization. The first associate to each word a tag corresponding to its part of speech
(noun, adjective, verb, pronoun, etc.). When a word can be more than one POS,
the tagger usually take a choice by applying a probabilistic model (e.g.: in english
a word following ”the” is probably a noun). The second takes words already tagged
and search their lemma in a lookup table. Some lemmatizer also returns some mor-
phological attributes such as gender, number, tense, etc.. Often, the verb tenses
and the different kinds of pronouns and adverbs are recognized already by the POS
tagger. Another important task is syllabification.

3.1.2 Syntax parsing

Syntax parsing for natural language is a challenging task, due to the ambiguity of
the language (at all levels: consider for example polysemic words, figurative lan-
guage, the influence of prosody, etc.). This ambiguity is explained by Chomsky
([30][31]) by assuming that language has two level: a deep structure that is the
meaning of a sentence, and a surface structure that is the sequence of words that
compose the sentence. A set of transformations can be applied to the surface struc-
ture without changing the deep one (e.g. ”John eat an apple” and ”An apple is
eaten by John”). At the same time, the same deep structure can be realized by
multiple surface structures. The class of grammars that can generate a natural
language is therefore that of transformational grammars. The Chomsky initial the-
ory as been modified multiple times. One of the most important variants is the
one described by Chomsky himself in [32] that, among other things, introduces the
concepts of empty categories and X-bar theory.
Empty categories are placeholders for referring expressions, pronominals and anaphors.
They are used to reconduct some kind of sentence to a standard grammar. A tipi-
cal example are the wh-questions, like ”where is John gone?”. In this example, the
empty categories theory says that ”where” has moved from the end to the begin-
ning of the sentence, leaving a so called trace in the original position.
The X-bar theory states that all syntagmas can be reduced to analogous parse trees.
In particular, each syntagma is an X phrase composed by an X-bar and a specifier
(e.g. a determiner). The X-bar can be composed either by another X-bar and an
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adjunct, or by an head X and zero or more complements2. The X is a placeholder
for the part-of-speech of the head, and the position of specifier, adjunct and com-
plements depends on the language, the type of sentence and pragmatic factors (e.g.
what is the theme and what is the rheme).
In [33] Chomsky presents the bare phrase structure, that is an attempt to overcome
x-bar theory with an even simpler set of rules (”move” and ”merge”). However this
theory has been criticized to be an unmotivated radical change to previous theories,
to it still has not replaced the X-bar theory.
The above theories allow to implement phrase structure grammars, that make pos-
sible to parse sentences by using a set of reduction rules.
An alternative way to parse sentences is dependency parsing. In this case, instead
of reducing sequences of words to syntagmas, the objective is to find the depen-
dency relationships between words (e.g. in subject-verb-object languages, a noun
or a pronoun on the left side of a verb depends on it as a subject).
Different dependency grammars use more or less of the theories seen above. For
example, many of them assume that each verb has a valence, and they always use
endocentric constructions (a grammatical construction is endocentric if it has the
same linguistic function as one of its parts) like the X-bar theory (where a syntagma
has the same function of its head). Dependency grammars are also usually aware
of empty categories.
An important concept used many dependency grammars is catena ([34] [35]). As-
suming that a sentences exists in two dimensions, the x-axis represent the prece-
dence between words, and a continuous combination of elements along this axis is a
string, whereas the y-axis represent the dominance relationships beween elements,
and a continuous combination along this axis is a catena. Catenaes are used for
example to linearize (remove crossing dependency links) parse trees of sentences
containing empty categories or to better interpret idiosyncratic language.

3.1.3 Semantic analysis

For what concerns semantics, it’s needed to retrieve the semantic relationships be-
tween words, such as synonymy, hyponymy (is-a relation, e.g. ”cat” is an hyponym
of ”feline”) and hypernymy (the reverse, e.g. ”feline” is an hypernym of ”cat”),
meronymy (part-of or member-of relation, e.g. ”finger” is a meronym of ”hand”)
and holonomy (the opposite of meronymy), troponymy (usually defined only for
verbs, is the case when an action is ”a way to do” another action, e.g. to lisp is a

2The difference between adjunct and complement is that, in valency theory, complements are
mandatory elements that saturate the syntagma head valence (usually only verbs have comple-
ments), whereas the adjuncts are optional.
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troponym of to talk) and entailment (only for verbs). These relationships are tran-
sitive (e.g. a cat is an hyponym of ”feline” and ”feline” is an hyponym of ”animal”,
so ”cat” is also an hyponym of ”animal”), an the meronymy/holonymy, troponymy
and entailment relations are inherited by the hyponyms of the linked terms. When
two terms share an hypernym, they are called coordinate terms.
A convenient way to represent these relationships is to use a semantic network. In
this way is also possible to estimate the semantic similarity between two terms (usu-
ally two lemmas) by looking their distance from the nearest common hypernym, if
they are coordinate terms, or the distance between the two if one is an hypernym
of the other, and eventually by considering also the other relations between them.
Note that this estimate can be inaccurate if different parts of the network have dif-
ferent granularities. An example of general purpose semantic network is WordNet
[36].
An alternative way to evaluate the semantic similarity between two words is to train
a model that associate to each word a vectorial representation, so that the simi-
larity between two vectors is roughtly proportional to the similarity between the
corresponding words. This technique is called word embedding, because it maps a
corpus, that can be seen as a space with one dimension for each different word, to a
space with many less dimensions (e.g. few hundred). The vectors can have different
meaning. In the case of Explicit Semantic Analysis (ESA, [37]), for example, each
word is associated to a vector of explicit features, like the Wikipedia entries where
it appears [38]. It’s important that the features are ortogonal. Latent Semantic
Analysis (LSA, [39]), instead, can be trained on any corpus, and the vectors are
post-processed to reduce the number of dimensions (the input is an N * M matrix,
where N is the cardinality of the vocabulary and M is the number of texts in the
corpus, and the output is a matrix N * X, where is is a relatively small number)
by using the singular-value decomposition. The downside is that at the end the
information contained in the vectors is no more explicit. Moreover, it’s very expen-
sive to create the vectors from a large corpus. Both ESA and LSA original purpose
was to give a way to measure the semantic relatedness between texts (for example,
between Wikipedia articles), but have then been found to be quite effective also to
measure the semantic similarity between words.
A more recent word embedding technique is word2vec [40], that can create the
vectors by using one among two different models, which are both two layer neural
networks trained with unsupervised algorithms. One is a Continuous Bag-of-Words
Model (CBWO), that takes as input a context (i.e. a set of words that appear be-
fore and after the target word in a point of the corpus) and returns a prediction of
the missing word. That prediction is compared with the real target and the error
is back-propagated to update the weights. The other is a continuous skip-gram
model, that takes as input the target word and returns a prediction of its context,
updating the weights depending on the error. The vectorial representations of the
words are contained in the matrix of the weights of the connections between the
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input and the hidden layer. In fact, that matrix has size VxN, where V is the size
of the vocabulary (there is one input neuron for each different word) and N is the
length of the vectors (that can be changed by changing the size of the hidden layer)
(fig. 3.1). CBWO is faster to train, but skip-gram is more accurate for infrequent
words.

Word2vec is much more efficient than previous techniques, and gives a better

Figure 3.1. The general schema of the neural network used to train the
word2vec model. Projection layers are omitted. The matrix depicted
contains the words vectors.

representation of the syntactic and semantic relations between words. Addition-
ally to semantic similarity, it allows to perform many other operations by using
vector arithmetics. For example, it’s possible to answer to question in the form
”A is to B as C is to X”. Indeed, the vector obtained by doing vector(B) -
vector(A) + vector(C) is probably very near to the correct answer (e.g. near-
est neighbor(vector(king) - vector(man) + vector(woman))=vector(queen)). This
have interesting consequences. For example, given a single words couple (plural
form, singular form), it’s possible to possible to obtain the singular form of any
plural word. So, with few predefined words couples, it’s possible to implement a
lemmatizer. In a similar way is possible to get hypernyms, meronyms and so on.
Unfortunately, in practice it’s difficult to learn vectors that are adequate for many
different kinds of word analogies at the same time. [41] analyzes this problem, also
by considering alternative ways to find the unknown term of the analogy.
The main competitor to word2vec today is GloVe (Global Vectors, [42]). This
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model is trained in two steps. First, a words co-occurrences matrix (where each el-
ement (i, j) indicates the number of times the word i occurs in the context (defined
as in wordnet) of word j) is constructed from the entire corpus. Then, for each
non-zero element of the matrix, one of the two words is considered as been part of
the context, and its vector is not modifies, while the vector of the other word is
computed so that its dot product with the vector of the context word is equal to
the logarithm of the conditional probability that that word occurs given that the
context word has occurred. This second step is repeated until convergence or until
a maximum number of epochs.
GloVe performs generally better than word2vec on many tasks, but the co-occurrences
matrix is very expensive to build, especially from the memory usage point of view.
Both word2vec and Glove can be directly applied on preprocessed text to improve
their accuracy. For example, they both can handle n-grams if the words are linked
with a symbol (like underscore, e.g. New York), and they can distinguish poly-
semic words if the text is modified by appending to each word its POS tag and the
optional entity tag (e.g. person, organization, country etc.) ([43]).
FastText [44] is another embedding technique, where the vectorial representation of
a word is computed as the sum of the vectors associated to the n-grams composing
it. This allows to compute on the fly a representation also for words not present in
the training corpus, which is particularly useful for morphologically rich languages.
A different way to quantify the coherence (in particular the internal one) of a text
is presented in [45]. Here, to each word, a set of concepts are associated. The
internal coherence of a text is computed by choosing one concept for each word so
that the sum of the distances in an ontology between the chosen concepts of all
the possible pair of words is minimized. The lower that value, the more coherent
is the text. Some ontology allow to find all the concepts that are ”evoked” by a
word, so the process can be fully automatized. The paper also suggest to use the
described algorithm only when the ratio between the number of words associated
with at least one concept and the total number of words is above some threshold,
in order to avoid strange results when many words cannot be mapped to concepts
in the ontology.

3.1.4 Discourse analysis

Another important NLP task useful for this thesis in co-reference resolution, which
objective is to find sets containing an antecedent and one or more mentions referring
to the same entity referred by the antecedent (similarly for cataphora). A simplified
variant of co-reference resolution is anaphora resolution, where the constraint that
the antecedent and the mention (called anaphor in anaphora resolution) must refer
to the same entity is removed (e.g. in the sentence ”no man said he was hungry”,
”man” is the anaphoric antecedent of ”he”, but there is not co-reference).
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The basic anaphora resolution algorithm consists in trying to find, for each anaphor,
the nearest (within a maximum distance) noun with compatible gender and num-
ber. This is already a quite difficult task for Italian, since it’s an inflected language
and the possessive pronouns are inflected according to the object. More complex
approaches assign a score based on the distance from the anaphor and the role of
the noun in the sentence (subject, object, etc.) to each possible antecedent, then
choose the one with the highest score. In our case, however, it’s not necessary to
find the most probable antecedent, but it’s sufficient to determine if there is at least
one compatible with the anaphor.
If for anaphora resolution the most simple approach can be applied, for co-reference
resolution this is not true. The difference is that, while in anaphora resolution an
antecedent among the candidate ones is always selected, in the case of co-reference
it’s possible that none of the antecedents that syntactically agree with the anaphor
also refer to the same entity. So it’s necessary to perform at least semantic checks,
and preferably also pragmatic ones (the latter are useful for example to interpret
idiomatic expressions).
The usual approach to co-reference resolution is to use a pipeline that first search
for all possible mentions, then apply a set of check at all levels (from lexical to
discourse ones) to find the true co-references. A famous implementation of this
technique is [46]. An alternative, that among other differences uses Word2Vec in-
stead of Wordnet to compute semantic distances, is [47].
An accurate co-reference resolution is a prerequisite for more complex discourse
analysis. An example [48], that is a technique to evaluate the local coherence
(i.e. coherence inside a discourse segment, as defined in [49]) of discourse. This
method is based on the concept that each utterance of a coherent discourse as one
backward-looking center, that is the most important (from the point of view of dis-
course structure) mention to an entity in one of the previous utterances, and a set
of forward-looking centers, that may be referred by the backward-looking centers
of the subsequent utterances. Note that a center can syntactically be either very
simple (e.g. a pronoun or a noun) or very complex (e.g. a noun phrase or even a
complex sentence, such as ”The man that is talking on phone to the woman that
is walking” in the utterance ”The man that is talking on phone to the woman that
is walking is my friend”), and they can be nested. So, another prerequisite for [48]
is to syntactically parse the text.
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3.2 Tools

3.2.1 Speech recognition

Since speech recognition is not one of the main concerns of this thesis, the choice of
the tool to be used has been restricted to out-of-the-box, easy to use cloud solutions.
In particular, the selection has been made among Google Cloud Speech 3, Watson
Speech to Text 4, Bing Speech Recognition 5, Amazon Transcribe 6 and Wit.ai 7.
Note: the information below has been last updated in September 2018.
Those tools evolve constantly and the comparison may no more repre-
sent well the current situation.
The characteristics used to evaluate the different solutions are: support for Italian
language, possibility to perform speaker recognition, price and usage limits, possi-
bility to perform NLP and parameters tuning possibilities. The results are shown
in Table 3.1
From that table is possible to see that Watson speech to text and Amazon tran-

scribe, although very powerful, cannot be used because they don’t support Italian
language. Among the others, Wit.ai is interesting because can provide NLP for
the transcribed audio, especially complex intent analysis. In the other hand, it’s
speech recognition capabilities are quite basic and not tunable, because that’s not
the core business of Wit.ai.
Given the above considerations, the final choice has been made between Google
cloud speech and Bing speech to text. The first has a longer free trial period and
an higher starting credit. Apart these parameters, it’s difficult to tell which of
them is cheaper, because Google make the user pay depending on the total length
of the submitted audio (each transaction is rounded up to a multiple of 15 seconds),
whereas in the case of Bing the payment depend on the number of transactions.
Considering the other characteristics, Bing allows to choose between three recog-
nition modes, that are predefined configurations of the recognizer optimized to
handle different types of speech. In particular the conversation mode improves the
accuracy of the recognition when the submitted audio is a conversation between
humans (i.e. with the following characteristics: open dictionary, disfluencies, etc.).
An advantages of Google cloud speech, instead, is the possibility to suggest utter-
ances (called ”phrases hints” in the documentation) to the recognizer. These must

3https://cloud.google.com/speech/

4IBM, https://www.ibm.com/watson/services/speech-to-text/
5Microsoft Cognitive Services, https://azure.microsoft.com/en-us/services/

cognitive-services/speech/

6https://aws.amazon.com/it/transcribe/

7https://wit.ai/
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Italian
sup-
port

Speaker
recogni-
tion

Price and us-
age limits

NLP Parameters tun-
ing possibilities

Google
cloud
speech

Yes Beta for
some lan-
guages
(not Ital-
ian) or
separate
API

1yr free trial,
after is free up
to 60mins/mo.
Starting credit

With
separate
API

Limited. The
most interesting is
the possibility to
suggest ”phrases”.
Words duration.

Watson
speech
to
text

No Integrated,
only for
a subset
of the
supported
languages

Free up to a
mins/mo limit,
then different
tariff based on
the usage

With
separate
API

Large (included
noise treshold and
custom models).
Words duration.

Bing
speech
to
text

Yes With sepa-
rate API

1mo free trial,
then free up to
5000 transac-
tions per month.
Starting credit.

With
separate
API

Recognition modes:
interactive, conver-
sation, dictation.
Utterances dura-
tion. Beta version
with customizable
models.

Amazon
tran-
scribe

No Integrated 60mins/mo
free for 1yr,
0.0004USD/s if
over 60mins or
after trial period

With
separate
API

Custom models,
words duration.

Wit.ai Yes No Free and virtu-
ally unlimited
usage

Some
inte-
grated
capabil-
ities

None for speech
recognition (except
language).

Table 3.1. Comparison of different speech recognition solutions as in September
2018. Google cloud speech is the selected one.

be specified in each request where they are needed and they can also be utterances
that are not in the dictionary. When the recognizer has a doubt between a sug-
gested utterance and another, if the confidence of the other utterance is below a
given threshold, it will choose the suggested one. The recognizer can apply this
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policy also to a part of a phrase hint. On the other hand, Bing speech to text
provide, as a beta version feature, the possibility to define custom language and
acustic models. These allow the user to emulate the Google words hints feature and
to implement even more complex features, such as recognition of dialectal speech
or particular noises.
An additional characteristic that has been taken into account is the length of the
audio that can be submitted in a single transaction, because it has been noted that
if an utterance is split in two (or more) requests, the words around the split(s) are
often not correctly recognized. So it’s important to minimize the intra-utterance
splits. Google Cloud Speech allows to submit audio up to 1 minute per request in
the case of synchronous or streaming transactions and up to 80 minutes for each
asynchronous request (but audio longer than 1 minute must reside in a Google
cloud storage bucket). Bing speech to text, instead, permits to send at most 15
seconds per request. Client libraries provided by Microsoft permit to overcome this
limit, but it’s not clear if they use another type of request or they simply split the
audio in 15 seconds long chunks and then concatenate the obtained texts. Anyhow,
there is not an official python library.
In conclusion, Google cloud speech as been chosen for this thesis, since it’s cheap
(and with a long trial period) and easy to use, and it provide a python library, the
possibility to submit long audio tracks and to suggest utterances to the recognizer.
Additionally, a set of beta features have been recently added (although some of
them don’t support Italian language) that make the Google solution even more
preferable.

3.2.2 Natural language processing

NLTK vs spaCy

NLTK (Natural Language ToolKit) and spaCy are two of the most known and used
python NLP libraries. Although they both implement the most of the basic NLP
techniques, they are based on different philosophies and each of them provide some
technique that is not offered by the other.
NLTK [27] born as a didactic tool providing several alternative algorithms for the
main NLP tasks and support material and tools to help the students to evaluate
and compare the different solutions and to extend the toolkit with their own algo-
rithms.
SpaCy [28], instead, is intended to be used in production systems. So it provides
an unique and highly optimized algorithm (in particular, the POS tagger is very
close to state of the art performances) for each NLP technique.
The first important difference betweeen the two tools is that spaCy has a far bet-
ter support for Italian language, providing models for tokenization, lemmatization,
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POS tagging, morphology analysis, dependency parsing, named entities recogni-
tion and context vectors (but not word2vec or GloVe, although it’s possible to add
them). NLTK, instead, only provide language agnostic tokenizers and english sup-
port for all the other components. That said, NLTK has the advantage to provide
interfaces for ontologies like WordNet and FrameNet (subsection 3.2.2), and in the
case of WordNet also Italian is supported (by querying the MultiWordNet ontol-
ogy).
Other characteristic os spaCy are the fact that the text is analyzed by a pipeline
that contains all the necessary steps in the correct order (e.g. the POS tagging
must be performed before dependency parsing) and the results are contained in a
Doc object, that is a sequence of Token objects, each of them representing a word
with the associated lemma, POS tag, morphology, vector, parent in the dependency
tree etc.. From a Doc is also possible to obtain a list of sentences or noun chunks,
that are represented by Span objects. The pipeline can be modified by adding or
removing stages, and it’s possible to (re)train one or all the stages. Doc, Span and
Token objects can contain attributes defined by the user at runtime, with optional
methods (e.g. getter and setter) and default values. In NLTK, instead, all the
components are independent and it’s up to the user to combine them in a logical
way. Moreover, the results are almost always returned as strings.
For all the considerations above, in this thesis spaCy (version 2.0.12) will be used
for all the low level analysis (tokenization, lemmatization, POS tagging, and pars-
ing), while NLTK will be used to query Wordnet (i.e. its multilingual version) and
Framenet.

WordNet vs FrameNet vs BabelNet

WordNet [36] is a lexical database and semantic network. When a user performs
a query for a word, a set of synsets (”synonyms sets”) is returned. Each synset
represent one of the meaning that can be associated to that word, and allow to
retrieve all the synonym lemmas. The query can be restricted to a single POS (e.g.
it’s possible to obtain the synsets related to ”patient” considered as noun).
Each synset is identified by an ID in the form lemma.POS.number, where the lemma
is the most significant lemma in the synset and number is used to disambiguate
synsets with the same lemma and POS and represent the relative commonness (the
lower the number, the more the synset is common with respect to the others with
the same lemma and POS). Synsets are linked to each other by means of different
types of relation that represent most of the relationships between words described
in subsection 3.1.3. Another interesting feature of WordNet is the possibility to
obtain information on the valence and types of parameters of verbs (through the so
called verb frames). There is also a multilingual version of WordNet, that support
also Italian language, although with some limitations.
FrameNet [50] is another lexical database, but it’s based on frame semantics. This
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means that the meanings of a word are described by the set of frames that are
”evoked” by that word.
Each frame represent a concept (e.g. a situation, an action, a relation, an entity,
etc.) and contains a set of Frame Elements (FEs) that define that concept (e.g. the
frame ”Revenge” contains the FEs: Offender, Injury, Injured Party, Avenger and
Punishment). Words that evoke that frame are called Lexical Units (LUs) and are
concrete instances of some of the FEs. Frames are linked to each other by means
of inheritance, subframe and usage relationships. Moreover, some LUs, frames and
FEs are annotated with semantic types (e.g. positive or negative, that can be useful
for sentiment analysis, artifact or natural etc.).
Compared to WordNet, FrameNet has a smaller vocabulary but allows to explore
different relationships between the words, and gives more syntagmatic information
than the very simple verb frames provided by WordNet. [51] is an example on how
to exploit both ontologies for text understanding. Unluckily, FrameNet currently
doesn’t support italian language.
BabelNet [52] is similar to WordNet (it’s based on synsets connected to each other),
but with some important difference. First of all, it has been created by auto-
matically integrating information coming from many different sources, including
WordNet, FrameNet, Wikipedia, ImageNet etc.. This allowed to create very large
semantic networks for most of the existing languages (for some of them, only a
subset of the sources was available), and make possible to use BabelNet also for
translation. Moreover, the usage of wikipedia allowed to insert additional links
between synsets that are related to each other in a way that is different from those
considered by WordNet, and the integration of ImageNet make possible to associate
images to synsets.
The richness of BabelNet in terms of both synsets and relationships can be an ad-
vantage or a disadvantage depending on the application (e.g. if you search ”cane”,
that is ”dog” in Italian, one of the more relevant results is a Finnish guitarist). For
sure the size of the network (about 29GB) make difficult to use it in local and usu-
ally require to send the query to the available web service (that imposes a limit of
1000 queries per day). Another disadvantage is that there are not python APIs for
now, while WordNet and FrameNet can be queried by using, for example, NLTK,
that also offers some additional utilities (e.g. to compute the similarity between
words by considering the distance between the corresponding synsets in WordNet).

Other tools

This section describes other tools that are complementary or alternative to the
previous ones.
Since one of the features found in literature is the number of syllables per minutes,
and since the syllabification task is not performed by spaCy and NLTK, it’s neces-
sary to find a tool for this. There is a syllabifier specific for Italian language named
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sylli [53], but unfortunately it’s not compatible with python 3. The alternatives
are in general hyphenetors. Hyphenation points are the places where a string can
be divided with a new line, and are a subset of the syllables separation points.
That said, by using some shrewdness (in particular by applying the hyphenator to
one word at a time, instead than to the entire text), it’s possible to approximate
very well the results that would have been returned by a syllabifier. The two most
famous python modules suited for that task are pyphen (http://pyphen.org/)
an PyHyphen (https://pypi.org/project/PyHyphen/). Both uses the same dic-
tionaries that are used for hyphenation in programs like LibreOffice and Mozilla
Firefox. The main difference is that pyphen is a pure python library, while PyHy-
phen is an interface to a C library.
Other useful python libraries are Gensim ([54]) and scikit-learn ([55]). The first al-
lows to compute the similarity between words or, more in general, texts by training
and using a variety of algorithms, included those for word embedding described in
subsection 3.1.3. The second implements several algorithms for data preprocessing
and machine learning.
Another tool that is worth to mention is Weka ([56]), an open-source machine learn-
ing workbench that allows to design, train, test and use machine learning pipelines
of any complexity by means of intuitive graphical interfaces. There are also a lot
of plugins available, like for example [57], a module for enabling autoML, that
is the automatic selection of the machine learning algorithms and tuning of their
hyperparameters.
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Chapter 4

Methods

4.1 Dataset

Three datasets have been used for this thesis, two for the Italian language and one
for the English one.
The first Italian corpus has been provided by the speech therapy department of the
University of Turin (UniTo). The collection have been done by recording 15 healthy
subjects and 15 with an initial cognitive decline (i.e. they have been admitted at the
Alzheimer evaluation unit of the Martini hospital). For each person, two recordings
have been performed: one for the description of a complex picture (fig. 4.1) taken
from the ELLM test ([58]) and one for a spontaneous speech test.
The second Italian dataset has been provided by the university of Trento (UniTN).
It contains recordings from 8 control and 8 pathological subjects. For each of them
there is at least a recording of the cookie theft picture (fig. 4.2) description and one
for the description of a tipical day of the subject. For some subject there are also
other recordings (e.g. what he/she do when taking a shower, or a recall test using
the little red riding hood story).
The English dataset is a subset of the Pitt corpus ([59]) stored on TalkBank1. In
particular, for both the control and the pathological groups, only the cookie theft
picture audio recording whose names ends with 0 have been selected. In this way it’s
assured that there is only one recording per subject, and it is the earliest one (which
is important for the pathological group). This is a suboptimal selection, because
in the pathological group there are subjects having different types of dementia at
different stages, and in the control group the best choice should have been the one
including the best audio quality recording for each subject. However, the access to
this corpus has been obtained only in late January 2019, and the selection has to

1https://talkbank.org/
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been done manually, so this is the best that has been possible to do. 70 control
and 170 pathological recordings have been extracted.

Figure 4.1. Picture to be described during the ELLM test.

4.2 Speech recognition

As written in subsection 3.2.1, Google Cloud Speech has been chosen as speech
recognition tool.
There are three ways to use it: in synchronous mode, it’s possible to transcribe at
most 1 minute of audio (that can be sent from the local machine or stored on Google
Cloud Storage) per request and the thread is blocked until it receives the response;
in asynchronous mode, it’s possible to transcribe audio tracks that are long up to
180 minute each (but those longer than 1 minute must be stored in Google Cloud
Storage), and the request method immediately returns an handle that can be used
to retrieve the result when it’s ready; in streaming mode, the duration of a single
audio track is again up to 1 minute (it can only be sent from local machine, at a
rate as similar as possible to real time), and it’s possible to receive so-called interim
results as soon as the recognizer is able to update the transcription relying on the
new data obtained from the client.
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Figure 4.2. Cookie theft picture.

All the three methods described above support the same set of configuration option
(only streaming recognition can have additional options) that includes the audio
encoding2 and sample rate (that can be omitted if declared in the file header), the
language, hints to improve the recognition of specific strings, the maximum number
of alternative transcripts that can be returned, the indication of the duration of each
word of the first alternative, the activation of punctuation recovery (beta version),
etc..
Since the dataset is composed by a set of audio files with a length in general
greater than 1 minute, the more appropriate mode is the asynchronous one. The
main alternative would have been the synchronous mode, that has the advantage to
not require to upload the file to Google Cloud Storage, but make necessary to split
the audio track in segments shorter than 1 minute. This can worsen the recognition
for two reasons. First of all, the break can happen in the middle of a word (but
this can be avoided in most cases by choosing a point where the volume is below
a given threshold). Furthermore, the recognizer try to guess each word by looking
also at its context, so it’s better to avoid to split the audio in random positions.
Rows from 190 to 210 of the code in appendix A show how the Google Cloud

2For details, see https://cloud.google.com/speech-to-text/docs/encoding
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Speech service is consumed to transcribe an audio file already loaded on Google
Cloud Storage and how the text is extracted from the response, concatenated and
entered in the spaCy pipeline. That piece of code also load the spaCy models for
the Italian language and a word2vec trained model, and add a special case to the
spaCy tokenizer to correctly recognize the word ”po’”.

4.2.1 Recognition accuracy

Speech recognition accuracy as been computed in terms of Word Error Rate (WER,
(4.1)), that is the minimum sum of the number of words to be inserted, deleted
and modified to change a string into one that is assumed as reference, divided by
the number of words in the reference.

WER = min(
I + D + M

N
) (4.1)

For this purpose, 9 automatic transcripts per class and the corresponding manual
transcripts from the University of Turin dataset have been used. WER has been
computed by using the python jiwer package3, that first remove punctuation and
text between square brackets and other delimiters, then replace each distinct word
with a number and finally uses an approximated algorithm to compute the Leven-
shtein distance between the two transformed strings (WER is in fact a Levenshtein
distance that uses words instead of characters). Additionally, the correlation be-
tween WER and the average word confidence returned by Google Cloud Speech
has been computed. This has been done to check if that confidence is a reliable
measure of the goodness of a transcript.
Table 4.1 reports the correlation for all the 18 samples and for those of each class.
Figure 4.3, instead, plot the distribution of the 18 samples in the WER/confidence
space.

Correlation 0.7
Correlation for healthy class 0.8

Correlation for AD class 0.6

Table 4.1. Correlation between WER and confidence.

3https://github.com/jitsi/asr-wer/
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Figure 4.3. WER vs confidence scatter plot, with tendency lines.

4.3 The problem of restoring the punctuation

4.3.1 Some approaches available in literature

Punctuation is very important for the correctness of the results returned by NLP
techniques. In fact, both POS tagging and syntax parsing exploit punctuation, and
most of the advanced analysis methods are based on these two techniques.
Google Cloud Speech can try, if opportunely configured, to restore punctuation.
Unfortunately, that’s a beta feature only available for en-US language (although
for some strange reason, sometimes in transcripts there is anyway some full stop).
Also spaCy try to restore punctuation, by adding appropriate transitions to its de-
pendency parsing algorithm ([60][61]). This approach give in general poor results
when dealing with completely unpunctuated text, at least for the Italian language,
and especially when there are also disfluencies.
Another possible approach, described for example in [62] and [29], is to perform
sequence to sequence transformation from an unpunctuated text to a punctuated
one. In particular, the second paper proposes an encoder-decoder architecture
where the encoder is a bi-directional Recurrent Neural Network (RNN) and an at-
tention mechanism is used to make the decoder focus on the relevant context.
The problem of RNNs is that they have substantially a sequential structure, thus
they are inefficient when processing long sequences. A more modern approach is to
use Convolutional Neural Networks (CNN). The first CNN that was able to become
the new state of the art in a sequence to sequence task (i.e. machine translation)
is described in [63]. The CNN used for NLP tasks are usually 1-dimensional. A 2D
CNN is however used in [64] with success. In that case, the network is very similar
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to those used for image recognition, and each ”pixel” of the ”image” is the embed-
ding of a couple of words, one from the input and one from the output. A mask is
applied so that the CNN doesn’t try to operate on the ”pixels” corresponding to
output words that have still to be generated.

4.3.2 Proposed approach

A novel approach proposed in this thesis consists in using the CNN described by
[64] to perform joint POS tagging and punctuation restoration. In this way it’s
possible that the accuracy in both tasks increase with respect to the case where
POS tagging is performed before punctuation restoration (so the tagger cannot
exploit the information related to the punctuation) or vice versa (with analogous
problems).
There are three operations to perform in order to adapt the open-source implemen-
tation of the aforementioned CNN available on github4 to the new task:

• Define a good embedding for POS tags and punctuation insertion operations;

• Collect a big enough dataset and preprocess it;

• Tune the hyperparameters of the network;

The first two points are quite easy. For the embedding, the one already available
should be fine. Each token is simply replaced by its position in a vocabulary built
at the beginning of the training phase. Concerning the dataset, it must contain
text annotated with POS tags. So it’s sufficient to take a large treebank (i.e. a
corpus annotated with dependency parsing information) and remove the superfluous
annotations. A possible suitable treebank is the Paisà corpus ([65]). Once this is
done, it’s possible to move or swap some of the words, together with their POS tags,
in order to simulate disfluent language, to replace punctuation with appropriate
”add comma/full stop/question mark/ecc.” tags and to split or merge sentences to
form what will be called ”spans” from now on. Finally, it’s necessary to split the
data in two separated corpora, aligned at the span level. Now it’s sufficient to run
the preprocess.py script with suitable parameters to generate all the needed train,
validation and test sets in the right format.
The tuning of the hyperparameters must be done before training. Since both the
output vocabulary and the alignment between the input and output sequences are
simpler than in the case of machine translation (e.g. for the alignment, each pos

4https://github.com/elbayadm/attn2d
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tag is associated to exactly one word, and the alignment is monotonic), the size of
the network can maybe be reduced a little.
Once the hyperparameters have been defined and the network configuration has
been saved in yaml format in the config folder, it’s possible to train and test the
model with slightly modified versions of the train.py and generate.py scripts.
The smallest pre-tuned model available on github requires a GPU with at least
16GB of memory to be trained. Considering that the target vocabulary is very
small and the task described here is simpler that machine translation (for example,
the alignment is monotonic and the ”translation” is only 1-to-1 or 1-to-many), it’s
maybe possible to use a smaller model, but still it would probably not fit in a
normal personal computer GPU memory.

4.4 Data augmentation and features extraction

The available dataset is too small to train a classifier. To augment it, it has been
chosen to use a sliding window over the text to obtain a large number of samples
(i.e. one for each position of the window). The window move by one word at a
time, and has a random length (between 100 and 200 words) that vary for each
execution of the script but is always the same for the duration of the sliding window
loop. A different length for each subject has been chosen in order to simulate what
happens in reality and possibly reduce the significance for classification of features
that are affected by text length. To avoid to increase the error rates of the POS
tagger and the parser, the sliding window is applied after them.
Rows 219 - 272 of the code in appendix A show how the duration and the average
confidence of each window are computed, the initialization of the lists that will hold
the results and the beginning of the loop that will contain all the features extraction
operations. In the following, this cycle will be called ”window loop”. This method
has the advantage to be very easy and to return samples corresponding to parts
of what the subject has really said, so at least the basic features should be quite
consistent. On the other hand, it make difficult or even impossible to compute those
metrics that are related to the structure of the discourse. Another disadvantage
is the fact that the samples related to the same speaker are not independent from
each other, so having, for example, one thousand samples from 30 subjects is not
the same than having them from one thousand speakers. Although, it’s always
better than having only 30 samples.

4.4.1 Prosodic features

The only prosodic feature extracted is syllables per minute. Pauses are included
in the computation, since Google Cloud Speech doesn’t allow to isolate them (the
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duration of each word include the adjacent pauses, see section 4.2).
Rows from 326 to 333 in appendix A use the pyphen library to syllabify the words
of the window (one at a time to make the results of pyphen, that is an hyphenator,
more consistent with those of a true syllabifier) and exploit the window duration
computed outside the window loop to compute the syllables per minute.

4.4.2 Parts-of-speech and lexical features

The POS rates for adjectives, nouns, pronouns and verbs are computed both in the
traditional way and by computing the moving average over a window of 30 words.
Additionally, a noun rate that ignore very common nouns is computed, in both
ways.
The function pos rate, declared at row 53 of appendix A, takes as input a sequence
of spaCy tokens (a doc or a span) and returns the POS rates for it. In the window
loop, from line 273 to line 298, that function is called to extract the features de-
scribed above.
Concerning lexical richness, the only features computed are TTR and MATTR,
that are extracted by the code at rows from 300 to 317 in appendix A. A set is
exploited to compute the number of distinct words.

4.4.3 Semantic and pragmatic features

Extracting significant semantic and pragmatic features in the case of this thesis is
in general very difficult. This is due both to the fact that most of them rely on
accurate syntax parsing, but this is not possible in this case (see section 4.3 for
details). So, the metrics computed in this thesis are only repetitions rate, rate of
pronominal anaphora that have an antecedent in the previous N words and two
indexes for internal coherence derived from [45].
Concerning repetitions, the function called repetitions rate declared at row 74
af the code in appendix A computes the rate of repetitions of rep len words sep-
ared by gap len words (e.g.: ”quel giorno ehm quel giorno” is a repetition of the
two words ”quel” and ”giorno” separed by the filler word ”ehm”). That function
is called at lines from 319 to 324 to calculate the repetitions of one or two words
separated by zero, one or two other words.
The rate of correct anaphora is computed by means of an adapted and simplified
pronominal anaphora resolution function, called pronominal anaphora resolu-

tion rate and declared at row 85 of appendix A. Since there are no clues about
verbal turns and speakers’ characteristics, it’s not possible to make considerations
about the correct use of first and second person pronoun, so only third person ones
are considered.
Lines from 94 to 100 try to find clitic pronouns postfixed to verbs, by exploiting a
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suitable dictionary containing these pronouns, declared at row 21. These pronouns
are correctly recognized by spaCy only when they are not suffixed to a verb, so this
dictionary is necessary in order to know which suffixed are pronouns. This method
is not perfect because it only considers the end of the word, but sometimes there
are more than one third person clitic pronouns suffixed to a verb, and usually in
these cases there are also other intricacies (e.g. ”prendiglielo”, can mean ”take it
to/from him/her/them”, and there is an ”e” between ”gli” and ”lo”). Anyhow, it
works well in most cases.
Another interesting piece of code is the one from line 90 to line 93. This if statement
is responsible to find pronouns (except suffixed clitics). In doing this, it tries also
to find qualificative and numeral pronouns. Unfortunately, this kind of pronoun is
not recognized by spaCy, and actually it’s often not even detected by this piece of
code.
When a pronoun is detected, lines from 101 to 111 try to find an antecedent for the
pronoun. This is done in a very simplistic way, by looking if there is a noun with
compatible gender and number (considering also the cases in which the pronoun is
masculine and the antecedent is neutral and when the pronoun has an indefinite
number)in the text preceding the pronoun.
The previous steps are repeated for each word. Then, the rate between the number
of pronouns with an antecedent and the total number of pronouns is returned. If
there are not pronouns, 1 is returned. This is more consistent than returning 0 or
a negative number.
Lastly, the internal coherence is evaluated by using two different metrics named
”ontoscore” to stress their similitude with the technique defined in [45]. The first
is named w2v ontoscore (declared at row 116 of appendix A) because it uses
word2vec to compute the similarity between words, whereas the second one is
named wordnet ontoscore (declared at row 131). The main difference between
the two is that in the first the similarity is calculated between the words as they
appear in the text and without taking into account that they may be polysemic,
whereas the one based on wordnet makes the evaluation basing on the synsets as-
sociated (by using the code at lines 212 - 217) with the lemmas of the words.
Both functions return, additionally to the result, the rate of ”covered words”, that
are the words present in the ontology and not in the stop words list of spaCy.
w2v ontoscore actually return two coherence measures, one based on the cosine
similarity between the normalized vectors corresponding to the words and the other
based on the euclidean distance between the original vectors.

4.4.4 Co-occurrences graph features

These features are those listed in [23]. The co-occurrences graph is built (after
having removed the stop words and normalized to lowercase the others) by using a
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function provided by textacy ([66]), that is a library that exploit spaCy to provide
higher level functions and utilities. The graph is then enriched by connecting each
pair of words that have a similarity score (i.e. cosine similarity) higher than 0.5 in
the word2vec model already mentioned. This is done, as suggested in [23], because
otherwise a co-occurrences graph built on a short text is often almost linear (it’s
not very probable that a word appear in multiple contexts), and that would make
the topological features extracted from it not significant. All these operations are
performed at rows from 374 to 385 of the code in appendix A.
The code from line 386 to line 401 computes the set of topological features listed
in [23] and add the obtained values to the lists defined outside the sliding window
loop. Notice that some function returns a list of values, one for each node. In these
cases, the average is calculated.

4.5 Data preprocessing

4.5.1 Outliers

Outliers are samples that are significantly different from the others belonging to
the same class. Their influence on the prediction accuracy of the classifier depends
on their number, the model used and what they represent. Sometimes, outliers
are even more useful than the other points. The ”difference” named before can be
evaluated in different ways. In this thesis the average distance from the k nearest
neighbors is used.
The first step is to plot the samples sorted by the 4 nearest neighbors distance
versus the distance. Hopefully, the plotted points will trace a sort of curve with
one or more knees. A knee separates the points that are inside a denser cluster
from those that are more widespread. So it’s possible to visually determine the
percentage of outliers.
In the case the percentage of outliers or their value may significantly affect the
model performances, the second step is to run the DBSCAN algorithm([67]) by
using as epsilon value the distance corresponding to the knee identified before. The
outliers will be included in a fake cluster (with id = -1 in most implementations).
Otherwise, it’s sufficient that the features standardization is performed in a way
that is not too sensitive to outliers (see subsection 4.5.2).

4.5.2 Features selection and transformation

Both features selection and features transformation can be used to reduce the di-
mensionality of the data. This is useful to speed up model training and reduce the
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risk of overfitting (on the other side, too few features reduce the accuracy). Con-
cerning the last point, [68] find some rule of thumb to estimate a good number of
features for some model, depending on the number of instances and the correlation
between features. At the same time, that paper states that those rules are valid
only in some case, and also find that sometimes the optimal number of features
doesn’t increase monotonically with the number of samples.
Features selection reduce the dimensionality of the data by removing the features
that are expected to be less relevant for the classification task. An exhaustive
search of the optimal subset is an NP-complete problem with complexity propor-
tional to the cardinality of the power set of the original features set. So it’s usually
necessary to use some heuristics, that can be based on the intrinsic characteristics
of the considered subset (filter methods) or use a model for the evaluation (wrapper
methods). Filter methods are faster, but wrapper ones may give better results.
Features transformation is based on a different approach. In this case, the original
features are transformed and combined so that data is mapped on a lower dimen-
sional space. An example of this approach is the Principal Components Analysis
(PDA), which linearly combines the original features so to project the data in a
space that maximize its variance.

Correlated features

In general, a good features set should include those that are strongly correlated with
the class but little correlated between each other. The first part of the previous
statement is always true, whereas the second one is not. In fact, two features that
are strongly correlated between each other should be both kept if the correlation add
some information useful for the classification. Instead, if the correlation between
the features doesn’t add any information (e.g. there is a mathematical relationship
between them), one of them should be discarded.
The computation of the correlation with a categorical class is in general problematic,
because the Pearson correlation value changes depending on the numeric value
assigned to each class. Luckily, when there are two classes only the sign changes, so
the absolute value of the correlation can still be useful. However, it’s often better
to use Mutual Information (MI) instead of correlation. MI basically indicates how
much the knowledge of a variable increases the knowledge of another one, and it’s
expressed as in equation (4.2).

MI(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(4.2)
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Features standardization

Features standardization (sometimes called normalization) transforms the original
features values by scaling and translating them so to obtain comparable values for
all the features. This step is crucial when dealing with classifiers based on distances,
like the k-NN one, but it’s useful also for other models. For example, a standardized
data space tends to speed up the convergence of neural networks. However, also
this operation is not always useful, because it’s possible that the scale or offset
difference between features it’s itself an information useful for the classifier.
The normalization should always be performed first on the training set, then on
the test set by using the parameters fitted during training. This is because the
test set should represent the data that will be used for prediction once the model
is deployed, and that data is not known neither at training nor at testing time, so
the most consistent option is to standardize both the testing and any future data
by using the parameters used for the training set.
There are different ways to standardize features. Typical approaches consist in
subtracting the mean and divide by the standard deviation, the difference between
the third and the first quartiles or the difference between the maximum and the
minimum values. Using standard deviation or quartiles for the division tends to
make the normalization less sensitive to outliers.

4.6 Hyperparameters tuning and model training

and evaluation

Hyperparameters tuning, training and testing are performed with a nested cross
validation (CV). The inner CV is used to select the features and optimize the
hyperparameters of the classifier so to maximize the accuracy on a validation set,
whereas the outer one test the optimized model (retrained on train + validation
sets) on an independent test set. The partitioning of the data in training, validation
and test sets is performed so that the instances belonging to the same patient are
all in the same set. This assures the independence between the three sets.

4.6.1 First approach: using the UniTo spontaneous speech
corpus

The first attempt to train a model was made by using only the spontaneous speech
part of the UniTo corpus and augmenting it as described in section 4.4. The im-
age description part was not used because the transcripts in this case are much
shorter, thus the data augmentation procedure would have produced a negligible
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number of instances compared to the other part of the corpus. Additionally, those
few instances would have probably been quite different from those obtained from
spontaneous speeches, thus probably worsening the accuracy of the model.
Additionally to features and class, each instance is associated to a ”sample” field
that contains an anonymized identifier of the subject. Before any other operation,
the instances are shuffled and features, class and sample fields are stored in three
different arrays.
The nested CV is performed by using as a model a pipeline composed by three steps:
standardization, features selection and classifier. In particular, the standardization
is performed by zeroing the average and scaling based on the interquartile range,
the feature selection is done by taking the N (where N is an hyperparameter to be
tuned) features with greater mutual information with the class, and the classifier is
a multilayer perceptron. The inner CV performs a random search for the optimal
hyperparameters over an N-dimensional distribution that vary depending on the
considered classifier. Anyway, one of the hyperparameters is always the number of
features to select. The optimization is performed for each inner fold, then the best
model among all folds is retrained on the training + validation sets and is passed
to the outer CV, where it’s evaluated on a test set.
Unfortunately, the model trained this way is very unstable, i.e. the optimal hy-
perparameters and the accuracy vary a lot depending on how the dataset is split.
This is due to the fact that the instances belong to only 22 people, so they don’t
represent the entire population, and the samples in the training set may be very
different from those present in the validation or test sets. Use also the other Italian
corpora would not be useful, because they are all very small, and while the number
of samples increases, also the size of the population increases.

4.6.2 Second approach: transfer learning from a model trained
on the English corpus

To solve the problem of the too small size of the Italian corpora, the idea was to
try training the model on a large English corpus and then use part of the Italian
ones just to tune it for the real target language. This method is called transfer
learning (because the knowledge encoded in a model trained for a task it transfered
to another task) and today is usually used in deep learning, but can actually be
exploited in any case where there are few data for the target task but many for a
similar one. The efficacy depends on how much they are similar.
The first step was to try to tune, train and test a model only on the Pitt corpus, to
see if the results are consistent with those found in literature. A nested CV on the
same pipeline used previously already gives an accuracy above 80&, as can be seen
in section 5.2. In that section it can be noticed that the score is further improved
by substituting the neural network with an ensemble. Furthermore, the variance is
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smaller than in the first approach.
Once assessed that the work described in this thesis gives good results on a large
enough corpus, the next step was to implement a naive form of transfer learning.
First of all, subset of features that have an high mutual information with the target
variable in both the English and the Italian datasets was manually selected. Then,
a pipeline (without the features selection stage) was tuned and trained on the
English corpus. Finally, the pipeline was retrained in ”warm start” mode, that is,
by using the neural network weights fitted previously as starting point. This very
simplistic implementation gives results comparable with those obtained with the
first approach (see section 5.2). However, it also suggests that transfer learning
may make sense for this kind of tasks, and a more sophisticate version of it might
actually improve accuracy.

4.6.3 Evaluation metrics

The metrics described in this section are defined in term of number of True Pos-
itive (TP, i.e. positive instances that are predicted as positive), True Negative
(TN, i.e. negative instances that are predicted as negative), False Positive (FP, i.e.
negative instances that are predicted as positive) and False Negative (FN, i.e. pos-
itive instances that are predicted as negative). These numbers can be effectively
represented in a so-called confusion matrix (fig. 4.4). Scikit learn default score

Figure 4.4. Confusion matrix for binary classification.
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metric for classification is accuracy, that is the number of correctly predicted in-
stances divided by the total number of instances (4.3). The advantage of accuracy
is that it describes the overall performances of the model with a single number.
The disadvantage is that it doesn’t make evident an eventual unbalancing among
the classes.

accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

More adequate metrics to use in case of a biased classifier are precision (4.4), recall
(4.5) and F1 score (4.6). For the positive class, precision is the fraction of instances
predicted as positive being actually positive. Recall is the fraction of actually
positive instances being predicted as positive. The F1 score is the harmonic mean
of precision and recall. Analogously for the negative class. These metrics are
computed for each class, so a bias of the model can easily be detected.

precisionT =
TP

TP + FP
, precisionN =

TN

TN + FN
(4.4)

recallP =
TP

TP + FN
, recallN =

TN

TN + FP
(4.5)

F1P = 2 · precisionP · recallP
precisionP + recallP

, F1N = 2 · precisionN · recallN
precisionN + recallN

(4.6)
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Chapter 5

Results

5.1 First approach

The model trained only on UniTo samples (spontaneous speech and ELLM picture
description for 12 physiological and 12 pathological subjects) has a very variable
accuracy. fig. 5.1 plots the accuracy for 50 runs of a 5x5 nested cross-validation (so
there are 50x5 accuracies). Data has been shuffled before each run. The histogram
shows accuracies varying from about 0.55 to around 0.75, with two peaks distant
0.15 from each other. The mean is 0.65, with a standard deviation of 0.061.

Figure 5.1. First approach accuracy for 50 nested cross validations.
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5.2 Second approach

The first step of the second approach was to tune, train and test a neural network
only on the selected subset of the Pitt corpus (cookie theft picture description for
70 physiological and 170 pathological subjects). The tuning was performed only for
the number of features, the number of neurons of each hidden layer (a multilayer
perceptron with two hidden layer was used), the initial value of the learning rate and
alpha, a regularization parameter. fig. 5.2 show the distribution of the accuracies
obtained with 200 runs of a 5x5 nested CV. The mean is 0.84, with a standard
deviation of 0.016. This means that the variance is one order of magnitude smaller
than in the previous approach (about 0.0003 versus 0.004).
After having checked that the system works well with the Pitt corpus, the second

Figure 5.2. Accuracy distribution for multilayer perceptron on the Pitt corpus.

step was to train the model on the entire English corpus, then further train it
on part of the UniTo dataset and test it on the remaining part. In this case,
4 features have been manually selected among those that have an high mutual
information score with respect to the class in both the English (fig. 5.3) and the
Italian (fig. 5.4) datasets. The chosen features are Pronoun Rate (PR), Moving
Average Type-Token Ratio (MATTR), coverage (i.e. the percentage of words that
can be found in the used word2vec model) and syllables per minute. Although
MATTR has an opposite behavior in the two datasets (In the English one it’s
greater for physiological individuals than for pathological ones, as shown in fig. 5.5,
whereas in the Italian one is the opposite, as shown in fig. 5.6), including it actually
improves significantly both accuracy mean and standard deviation.
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Figure 5.3. Mutual information between features and target variable
for the Pitt corpus.

Figure 5.4. Mutual information between features and target variable for
the UniTo corpus.
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Figure 5.5. Correlation between features and class for the Pitt corpus. Positive
values are greater in healthy instances than in AD ones and viceversa.

Figure 5.6. Correlation between features and class for the UniTo corpus. Positive
values are greater in healthy instances than in AD ones and viceversa.
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Before training the model on the entire Pitt corpus, 100 runs of a 5x5 nested CV
were performed, with a pipeline without the features selection step, in order to
find the optimal hyperparameters. The accuracy (fig. 5.7) has a mean of 0.75 and
standard deviation of 0.018, whereas figs. 5.8 to 5.11 show the distribution of the
optimal number of neurons for each hidden layer, the optimal alpha in the 0 - 8 and
0 - 1 ranges and the optimal initial value for the learning rate. It’s interesting to
notice that the value of the last one seems to be not relevant. This is confirmed by
figs. 5.12 to 5.14, that show a roughly uniform distribution of the initial learning rate
(y axis) in correspondence of the optimal values of the other two hyperparameters
and of the different values for accuracy.

At this point, a multilayer perceptron with alpha equal to 0.5 and 90 neurons
per hidden layer is trained on the entire Pitt dataset. Then, the same network is
further trained 1000 times on 15 random samples of the Unito corpus and tested
on the other 9. As shown in fig. 5.15, both mean (0.57) and standard deviation
(0.086) are worse than in the old approach.

5.3 Discussion

The implemented pipeline (speech recognition, features extraction and classifica-
tion) has performances comparable to the state of the art on the Pitt corpus. This
demonstrates the goodness of the approach. Moreover, there is room for improve-
ments in several areas, as listed in section 6.1.
However, on the UniTo corpus the performances worsen a lot, both for what con-
cerns the accuracy mean value and the accuracy standard deviation. This is proba-
bly due to the small size of the dataset, that cause the model to fit different subset
of the complete population depending on which data falls in the training set and
which in the test set. Other possible causes of the poor results may be the fact
that the subjects in the UniTo dataset have been chosen so to be very close to the
boundary between healthy and AD, and that the presence of both image descrip-
tion and spontaneous speech recordings in the corpus make it more heterogeneous
than the Pitt one, so it’s more difficult to separate the two classes.
Transfer learning, that was introduced to try to solve the problems with the Italian
corpus, seems to be not useful. However, the implementation used in this thesis
was very naive. In particular, the fact that the pre-trained model is fitted on the
second dataset without early stopping strategies may tend to cancel the contribute
given by the first training step. However, it’s difficult to perform early stopping
with a dataset so small, because it requires to keep apart a small (but not too
much) dataset that will not be included in neither the training nor the test set.
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Figure 5.7. Accuracy distribution.

Figure 5.8. Distribution of the optimal number of neurons for each of
the two hidden layers.
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5.3 – Discussion

Figure 5.9. Distribution of the optimal alpha regularization term.

Figure 5.10. Distribution of the optimal alpha in the 0 - 1 range.
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5 – Results

Figure 5.11. Distribution of the optimal initial learning rate.

Figure 5.12. Number of neurons vs initial learning rate.
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5.3 – Discussion

Figure 5.13. Alpha vs initial lerning rate.

Figure 5.14. Accuracy vs initial learning rate.
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Figure 5.15. Accuracy on the UniTo dataset after transfer learning.
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Chapter 6

Conclusions

The aim of this thesis can be summarized in the following question: is it possible
to build an automatic, low cost and flexible system able to distinguish Italian
speakers suffering of mild cognitive decline from those who are not? To answer
this question, a set of 34 features has been extracted, covering prosodic, lexical,
morphosyntactic and semantic aspects of the language. The text on which those
features have been computed has been obtained by automatically transcribe audio
tracks using a general purpose speech recognizer (i.e. Google Cloud Speech). Then
a neural network has been tuned and trained with nested cross validation. The
hyperparameters tuning involve also the selection of an optimal number of features,
ranked basing on the mutual information with respect to the target variable.
The question stated above has not received a definitive answer, probably due to a
combination of scarcity of data (12 pathological and 12 physiological individuals)
and low signal to noise ration of the Italian dataset. However, the fact that the
system performs very well (i.e. accuracy of about 0.84) on a large (170 pathological
and 70 physiological subjects) English corpus and that it gives anyhow an accuracy
around 0.65 for the Italian corpus (but with an high variance) is promising.
It’s planned to continue the collaboration with the speech therapy department of
UniTo, which will try to enlarge the dataset. On the technical side, the project can
be improved in different directions, as described in the following section.

6.1 Future works

This thesis can be the starting point of more complex works. Improvements are pos-
sible in many area, including speech and speaker recognition, punctuation restora-
tion, features extraction and classification. Many of these, however, depend on the
availability of a large enough dataset.
Concerning speech recognition, it would be important to tune a recognizer with
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specific models. Some cloud services already provide this option, and the other
will probably follow this trend in the near future. Speakers segmentation would
also give a significant improvement, and it’s another feature that is being adopted
by most services. This however require a training phase of the recognizer for each
different pair of speakers.
Concerning punctuation restoration, section 4.3 provides some literature reference
and proposes a novel approach for joint punctuation insertion and POS tagging
with quite detailed instructions to train the model. A future work may implement
that and other approaches and choose the best one. In any case, this task can
probably be solved effectively only with deep learning techniques, and an high per-
formance computation platform is needed for most of them. Once punctuation is
available, syntax parsing should perform better, thus allowing to extract complex
features that depend upon it.
Classification can be probably improved by considering different features selection
algorithms (and maybe combining them as in [69] and [70]) and classifiers, and
by exploiting better ensemble methods. To improve the performances on small
datasets, an approach suggested by Dr. Rossella Muò (UniTo) can be tried. The
idea is to start training the model on more compromised subjects for the AD group,
which are easier to find and record, then progressively refine it with less compro-
mised individuals.
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Appendix A

Code

1 from google.cloud import speech_v1p1beta1 as speech

2 from google.cloud.speech_v1p1beta1 import types, enums

3 import pickle

4 import spacy

5 from spacy.attrs import ORTH, LEMMA

6 import pyphen

7 import matplotlib.pyplot as plt

8 import numpy

9 from openpyxl import Workbook, load_workbook

10 from nltk.corpus import wordnet as wn

11 from gensim.models import Word2Vec

12 from itertools import islice

13 import textacy

14 from pprint import pprint

15 import networkx as nx

16 from random import randint

17

18 class_names=[’healty’, ’alzheimer’]

19 sample_names=[’sano’, ’alz’]

20

21 clitic_pronouns={

22 ’gli’: {’Gender’: ’Masc’, ’Number’: ’Sing’},

23 ’li’: {’Gender’: ’Masc’, ’Number’: ’Plur’},

24 ’le’: {’Gender’: ’Fem’, ’Number’: ’Any’},

25 ’lo’: {’Gender’: ’Masc’, ’Number’: ’Sing’},

26 ’la’: {’Gender’: ’Fem’, ’Number’: ’Sing’}

27 }

28

29 pos_mapping={

30 ’ADJ’: wn.ADJ,
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31 ’NOUN’: wn.NOUN,

32 ’VERB’: wn.VERB

33 }

34

35 general_words=[’cosa’, ’coso’, ’cose’, ’cosi’, ’affare’, ’affari’, ’tizio

↪→ ’, ’tizia’, ’tizi’, ’tizie’]

36

37 class Treenode(object):

38 def __init__(self, data=None, parent=None):

39 self.data=data

40 self.parent=parent

41 self.children=[]

42

43 def rolling_window(seq, window_size):

44 win = [] # First window

45 for i in range(window_size):

46 win.append(seq[i])

47 yield win

48 for e in seq: # Subsequent windows

49 win[:-1] = win[1:]

50 win[-1] = e

51 yield win

52

53 def pos_rates(doc):

54 words_count=0

55 adj_count=0

56 noun_count=0

57 modified_noun_count=0

58 pron_count=0

59 verb_count=0

60 for token in doc:

61 words_count+=1

62 if token.pos_==’ADJ’:

63 adj_count+=1

64 if token.pos_==’NOUN’ or token.pos_==’PROPN’:

65 noun_count+=1

66 if token.text not in general_words:

67 modified_noun_count+=1

68 if token.pos_==’PRON’:

69 pron_count+=1

70 if token.pos_==’VERB’:

71 verb_count+=1
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72 return adj_count/words_count, noun_count/words_count,

↪→ modified_noun_count/words_count, pron_count/words_count,

↪→ verb_count/words_count

73

74 def repetitions_rate(doc, rep_len, gap_len):

75 rep_count=0

76 for i in range(len(doc)-2*rep_len-gap_len):

77 repeated=True

78 for j in range(i, i+rep_len):

79 if doc[j].text!=doc[j+rep_len+gap_len].text:

80 repeated=False

81 if repeated==True:

82 rep_count+=1

83 return rep_count/(len(doc)-2*rep_len-gap_len)

84

85 def pronominal_anaphora_resolution_rate(seq):

86 pron_count=0

87 anaphora_count=0

88 for i in range(len(seq)-1):

89 is_pronoun=False

90 if seq[i].pos_==’PRON’ or (seq[i].pos_==’ADJ’ and seq[i-1].pos_==’

↪→ DET’ and seq[i+1].pos_!=’NOUN’):

91 is_pronoun=True

92 pron_gender=seq[i].tag_[seq[i].tag_.find(’Gender=’)+7:seq[i].tag_

↪→ .find(’Gender=’)+10]

93 pron_number=seq[i].tag_[seq[i].tag_.find(’Number=’)+7:seq[i].tag_

↪→ .find(’Number=’)+11]

94 if seq[i].pos_==’VERB’:

95 for clitic, morph in clitic_pronouns.items():

96 if seq[i].text.endswith(clitic):

97 is_pronoun=True

98 pron_gender=morph[’Gender’]

99 pron_number=morph[’Number’]

100 break

101 if is_pronoun:

102 pron_count+=1

103 for token in seq[i-1::-1]:

104 if token.pos_==’NOUN’:

105 ant_gender=token.tag_[token.tag_.find(’Gender=’)+7:token.

↪→ tag_.find(’Gender=’)+10]

106 ant_number=token.tag_[token.tag_.find(’Number=’)+7:token.

↪→ tag_.find(’Number=’)+11]
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107 if (pron_gender in [’Mas’, ’Fem’] and pron_gender==

↪→ ant_gender) or (pron_gender!=’Fem’ and ant_gender not

↪→ in [’Mas’, ’Fem’]):

108 if (pron_number in [’Sing’, ’Plur’] and pron_number==

↪→ ant_number) or (pron_number not in [’Sing’, ’Plur’

↪→ ]):

109 #print(seq[i].text, seq[i].pos_, pron_gender,

↪→ pron_number, ’refers to’, token.text, token.pos_

↪→ , ant_gender, ant_number)

110 anaphora_count+=1

111 break

112 if pron_count==0:

113 return 1

114 return anaphora_count/pron_count

115

116 def w2v_ontoscore(seq, w2v_model):

117 covered_words=[]

118 cosine_tot=0

119 euclidean_tot=0

120 for w in seq:

121 if not w.is_stop and w.text in w2v_model.wv.vocab:

122 covered_words.append((w.text, w2v_model.wv[w.text]))

123 #print(w.text, numpy.linalg.norm(numpy.array(w2v_model.wv[w.text

↪→ ])))

124 cw_number=len(covered_words)

125 for i, w1 in enumerate(covered_words, 1):

126 for w2 in covered_words[:i-1]:

127 cosine_tot+=w2v_model.wv.similarity(w1[0], w2[0])

128 euclidean_tot+=numpy.linalg.norm(numpy.array(w1[1]-w2[1]))

129 return cosine_tot*2/(cw_number*cw_number-cw_number), euclidean_tot*2/(

↪→ cw_number*cw_number-cw_number), cw_number/len(seq)

130

131 def wordnet_ontoscore(seq, synsets, start_id, old_covered_words,

↪→ old_score, cache):

132 tree=Treenode(0)

133 level_nodes=[]

134 covered_words=[]

135 stack=[]

136 cur_similarity_sum=0

137 max_similarity_sum=0

138 i=start_id

139 for w in seq:

140 if len(synsets[i])>0:

141 covered_words.append(synsets[i])
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142 i+=1

143 if covered_words==old_covered_words:

144 #print(’equal to previous’)

145 return old_score, len(covered_words)/len(seq), covered_words

146 cw_number=len(covered_words)

147 if(cw_number>0):

148 for s in covered_words[0]:

149 n=Treenode(s, tree)

150 tree.children.append(n)

151 level_nodes.append(n)

152 for w in covered_words:

153 new_level_nodes=[]

154 for n in level_nodes:

155 for s in w:

156 c=Treenode(s, n)

157 n.children.append(c)

158 new_level_nodes.append(c)

159 level_nodes=new_level_nodes

160 #print(len(level_nodes))

161 for n1 in level_nodes:

162 path=[n1]

163 while(n1.parent is not tree):

164 n2=n1.parent

165 for n in path:

166 if (n, n2) not in cache:

167 ps=n.data.path_similarity(n2.data)

168 cache[(n, n2)]=ps

169 else:

170 ps=cache[(n, n2)]

171 if ps is not None:

172 cur_similarity_sum+=ps

173 if (n2, n) not in cache:

174 ps=n2.data.path_similarity(n.data)

175 cache[(n2, n)]=ps

176 else:

177 ps=cache[(n2, n)]

178 if ps is not None:

179 cur_similarity_sum+=ps

180 path.append(n2)

181 n1=n2

182 if(cur_similarity_sum>max_similarity_sum):

183 max_similarity_sum=cur_similarity_sum

184 score=max_similarity_sum

185 if cw_number>1:
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186 score/=cw_number*cw_number-cw_number

187 return score, cw_number/len(seq), covered_words

188 return 0, 0, []

189

190 client=speech.SpeechClient();

191 print("window size: ", window_size)

192 audio = types.RecognitionAudio(uri=’gs://alzthesis/alz1.flac’)

193 config = types.RecognitionConfig(encoding=enums.RecognitionConfig.

↪→ AudioEncoding.FLAC, language_code=’it-IT’,

↪→ enable_word_time_offsets=True, enable_word_confidence=True)

194 operation = client.long_running_recognize(config, audio)

195

196 print(’Waiting for operation to complete. Loading some modules.’)

197 model=Word2Vec.load(’wiki_iter=5_algorithm=skipgram_window=10_size=300

↪→ _neg-samples=10.m’)

198 nlp=spacy.load(’it_core_news_sm’)

199 nlp.tokenizer.add_special_case("po’", [{ORTH: "po’", LEMMA: ’poco’}])

200 response = operation.result()

201

202 with open(’texts/alz1.txt’, ’wb’) as f:

203 pickle.dump(response, f)

204

205 string=’’

206 for result in response.results:

207 print(format(result.alternatives[0].transcript))

208 string+=result.alternatives[0].transcript+’ ’

209

210 doc=nlp(string)

211

212 synsets_list=[]

213 for token in doc:

214 if token.pos_ in pos_mapping.keys() and not token.is_stop:

215 synsets_list.append(wn.synsets(token.lemma_, pos=pos_mapping[token.

↪→ pos_], lang=’ita’)[:3])

216 else:

217 synsets_list.append([])

218

219 window_size=randint(100, 200)

220 words_objects=[]

221 for result in response.results:

222 for w in result.alternatives[0].words:

223 words_objects.append(w)

224 windows_times=[]

225 windows_average_confidences_list=[]
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226 for words_window in islice(rolling_window(words_objects, window_size),

↪→ window_size, None):

227 windows_times.append(words_window[-1].end_time.seconds-words_window

↪→ [0].start_time.seconds)

228 tot=0

229 for w in words_window:

230 tot+=w.confidence

231 windows_average_confidences_list.append(tot/len(words_window))

232 average_window_time=sum(windows_times)/len(windows_times)

233

234 adj_rate_list=[]

235 noun_rate_list=[]

236 modified_noun_rate_list=[]

237 pron_rate_list=[]

238 verb_rate_list=[]

239 maar_list=[]

240 manr_list=[]

241 mamnr_list=[]

242 mapr_list=[]

243 mavr_list=[]

244 ttr_list=[]

245 mattr_list=[]

246 r1w0f_list=[]

247 r1w1f_list=[]

248 r1w2f_list=[]

249 r2w0f_list=[]

250 r2w1f_list=[]

251 r2w2f_list=[]

252 syllables_per_min_list=[]

253 anaphora_rate_list=[]

254 w2v_cosine_ontoscore_list=[]

255 w2v_euclidean_ontoscore_list=[]

256 w2v_coverage_list=[]

257 wordnet_ontoscore_list=[]

258 wordnet_coverage_list=[]

259 pagerank_list=[]

260 betweenness_list=[]

261 eccentricity_list=[]

262 eigenvector_list=[]

263 neighbor_degree_list=[]

264 average_shortest_path_list=[]

265 degree_list=[]

266 degree_assortativity_list=[]

267 diameter_list=[]

69



A – Code

268 average_clustering_list=[]

269 win_number=0

270 for span in islice(rolling_window(doc, window_size), window_size, None):

271 win_number+=1

272 print(’Processing window ’+str(win_number)+’ of ’+str(len(doc)+1-

↪→ window_size))

273 adj_rate, noun_rate, modified_noun_rate, pron_rate, verb_rate=

↪→ pos_rates(span)

274

275 adj_rate_list.append(adj_rate)

276 noun_rate_list.append(noun_rate)

277 modified_noun_rate_list.append(modified_noun_rate)

278 pron_rate_list.append(pron_rate)

279 verb_rate_list.append(verb_rate)

280

281 adj_rate_list1=[]

282 noun_rate_list1=[]

283 modified_noun_rate_list1=[]

284 pron_rate_list1=[]

285 verb_rate_list1=[]

286 for win in rolling_window(span, 30):

287 adj_rate, noun_rate, modified_noun_rate, pron_rate, verb_rate=

↪→ pos_rates(win)

288 adj_rate_list1.append(adj_rate)

289 noun_rate_list1.append(noun_rate)

290 modified_noun_rate_list1.append(modified_noun_rate)

291 pron_rate_list1.append(pron_rate)

292 verb_rate_list1.append(verb_rate)

293

294 maar_list.append(sum(adj_rate_list1)/float(len(adj_rate_list1)))

295 manr_list.append(sum(noun_rate_list1)/float(len(noun_rate_list1)))

296 mamnr_list.append(sum(modified_noun_rate_list1)/float(len(

↪→ modified_noun_rate_list1)))

297 mapr_list.append(sum(pron_rate_list1)/float(len(pron_rate_list1)))

298 mavr_list.append(sum(verb_rate_list1)/float(len(verb_rate_list1)))

299

300 words_count=0

301 distinct_words=set()

302 for token in span:

303 words_count+=1

304 distinct_words.add(token.text.lower())

305

306 ttr_list.append(len(distinct_words)/words_count)

307
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308 ttr_list1=[]

309 for win in islice(rolling_window(span, 30), 30, len(span)+1):

310 words_count=0

311 distinct_words.clear()

312 for token in win:

313 words_count+=1

314 distinct_words.add(token.text.lower())

315 ttr_list1.append(len(distinct_words)/words_count)

316

317 mattr_list.append(sum(ttr_list1)/float(len(ttr_list1)))

318

319 r1w0f_list.append(repetitions_rate(span, 1, 0))

320 r1w1f_list.append(repetitions_rate(span, 1, 1))

321 r1w2f_list.append(repetitions_rate(span, 1, 2))

322 r2w0f_list.append(repetitions_rate(span, 2, 0))

323 r2w1f_list.append(repetitions_rate(span, 2, 1))

324 r2w2f_list.append(repetitions_rate(span, 2, 2))

325

326 p=pyphen.Pyphen(lang=’it_IT’)

327 syllables_count=0

328 for w in span:

329 syllables_count+=len(p.inserted(w.text).split(’-’))

330 if win_number>len(windows_times):

331 syllables_per_min_list.append(average_window_time)

332 else:

333 syllables_per_min_list.append(syllables_count*60/windows_times[

↪→ win_number-1])

334

335 anaphora_rate_list1=[]

336 for w in islice(rolling_window(span, 30), 30, len(span)+1):

337 anaphora_rate_list1.append(pronominal_anaphora_resolution_rate(w))

338 anaphora_rate_list.append(sum(anaphora_rate_list1)/float(len(

↪→ anaphora_rate_list1)))

339

340 w2v_cosine_ontoscore_list1=[]

341 w2v_euclidean_ontoscore_list1=[]

342 w2v_coverage_list1=[]

343 for w in islice(rolling_window(span, 30), 30, len(span)+1):

344 w2vco, w2veo, w2vc=w2v_ontoscore(w, model)

345 w2v_cosine_ontoscore_list1.append(w2vco)

346 w2v_euclidean_ontoscore_list1.append(w2veo)

347 w2v_coverage_list1.append(w2vc)

348 w2v_cosine_ontoscore_list.append(sum(w2v_cosine_ontoscore_list1)/float

↪→ (len(w2v_cosine_ontoscore_list1)))
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349 w2v_euclidean_ontoscore_list.append(sum(w2v_euclidean_ontoscore_list1)

↪→ /float(len(w2v_euclidean_ontoscore_list1)))

350 w2v_coverage_list.append(sum(w2v_coverage_list1)/float(len(

↪→ w2v_coverage_list1)))

351

352 wordnet_ontoscore_list1=[]

353 wordnet_coverage_list1=[]

354 i=0

355 cw=[]

356 wno=0

357 cache={}

358 for w in islice(rolling_window(doc, 5), 5, len(doc)+1):

359 wno, wnc, cw=wordnet_ontoscore(w, synsets_list, i, cw, wno, cache)

360 i+=1

361 wordnet_ontoscore_list1.append(wno)

362 wordnet_coverage_list1.append(wnc)

363 wn_ontoscore=0

364 for e in wordnet_ontoscore_list1:

365 wn_ontoscore+=e

366 wn_ontoscore/=len(wordnet_ontoscore_list1)

367 wordnet_ontoscore_list.append(wn_ontoscore)

368 wordnet_coverage=0

369 for e in wordnet_coverage_list1:

370 wordnet_coverage+=e

371 wordnet_coverage/=len(wordnet_coverage_list1)

372 wordnet_coverage_list.append(wordnet_coverage)

373

374 wl=[]

375 for w in span:

376 if not w.is_stop:# and w.text in model.wv.vocab:

377 wl.append(w.text)

378 g=textacy.network.terms_to_semantic_network(wl, normalize=’lower’)

379 nl=list(g.nodes)

380 for i in range(len(nl)):

381 n1=nl[i]

382 if n1 in model.wv.vocab:

383 for n2 in nl[i+1:]:

384 if n2 in model.wv.vocab and model.wv.similarity(n1, n2)>=0.5:

385 g.add_edge(n1, n2)

386 l=nx.pagerank_numpy(g).values()

387 pagerank_list.append(sum(l)/float(len(l)))

388 l=nx.betweenness_centrality(g).values()

389 betweenness_list.append(sum(l)/float(len(l)))

390 l=nx.eccentricity(g).values()
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391 eccentricity_list.append(sum(l)/float(len(l)))

392 l=nx.eigenvector_centrality_numpy(g).values()

393 eigenvector_list.append(sum(l)/float(len(l)))

394 l=nx.average_neighbor_degree(g).values()

395 neighbor_degree_list.append(sum(l)/float(len(l)))

396 average_shortest_path_list.append(nx.average_shortest_path_length(g))

397 l=nx.degree_centrality(g).values()

398 degree_list.append(sum(l)/float(len(l)))

399 degree_assortativity_list.append(nx.degree_assortativity_coefficient(g

↪→ ))

400 diameter_list.append(nx.diameter(g))

401 average_clustering_list.append(nx.average_clustering(g))

402

403 print(’Saving on file’)

404 wb=load_workbook(’results.xlsx’)

405 s=wb.get_sheet_by_name(’sheet1’)

406 for ar, nr, mnr, pr, vr, maar, manr, mamnr, mapr, mavr, ttr, mattr, r1w0f

↪→ , r1w1f, r1w2f, r2w0f, r2w1f, r2w2f, anaphora,

↪→ w2v_cosine_ontoscore, w2v_euclidean_ontoscore, w2v_coverage,

↪→ pagerank, degree, betweenness, eccentricity, eigenvector,

↪→ average_shortest_path, diameter, average_clustering,

↪→ syllables_per_minute, average_confidence in zip(adj_rate_list,

↪→ noun_rate_list, modified_noun_rate_list, pron_rate_list,

↪→ verb_rate_list, maar_list, manr_list, mamnr_list, mapr_list,

↪→ mavr_list, ttr_list, mattr_list, r1w0f_list, r1w1f_list,

↪→ r1w2f_list, r2w0f_list, r2w1f_list, r2w2f_list, anaphora_rate_list

↪→ , w2v_cosine_ontoscore_list, w2v_euclidean_ontoscore_list,

↪→ w2v_coverage_list, pagerank_list, degree_list, betweenness_list,

↪→ eccentricity_list, eigenvector_list, average_shortest_path_list,

↪→ diameter_list, average_clustering_list, syllables_per_min_list,

↪→ windows_average_confidences_list):

407 print(’appending row’)

408 s.append([ar, nr, mnr, pr, vr, maar, manr, mamnr, mapr, mavr, ttr,

↪→ mattr, r1w0f, r1w1f, r1w2f, r2w0f, r2w1f, r2w2f, anaphora,

↪→ w2v_cosine_ontoscore, w2v_euclidean_ontoscore, w2v_coverage,

↪→ pagerank, degree, betweenness, eccentricity, eigenvector,

↪→ average_shortest_path, diameter, average_clustering,

↪→ syllables_per_minute, average_confidence, ’alzheimer’, ’alz1’])

409 wb.save(’results.xlsx’)

410 wb.close()
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